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the KPz universality class with a power-law noise distribution of the form P ( q ) -  q-OLfl' 
in d = 2. For all three models. the width and height-fluctuation distributions obey a sealing 
relation and exhibit power-law tails. This has implications for directly observing the 
presence of power-law noise in experiments. In addition, we present extensive results for 
both scaling exponents a and 0 as a function of p for p = 2-8. Although there is some 
variation in the results for different models, for all three models we find anomalous 
exponents for 2 S U S 7. while the scaling relation oi + z = 2 holds far all U. For a linear 
model without sideways growth, we verify that the presence of power-law noise does not 
lead to anomalous exponents for fi > 2. 

Recently considerable progress has been made in understanding the dynamics of 
non-equilibrium surface growth phenomena [l] in the context of a variety of models, 

surface fluctuations exhibit scaling behaviour in both time and space. In particular, 
assuming an initially flat interface, the scaling of the interface width is expected to he 
of the form [2], w(L,  I )  = L q f ( f / L ' ) ,  where w(L,  1 )  is the interface width on length 
scale L at time I, z = a / p  is the dynamic exponent, and the scaling function f ( x )  - x B  
for x << 1 and f ( x )  + constant for x >> 1. Analytic results based on the KPZ equation [3], 
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a =$ and p = f. 
The strong universality in the evolution of rough surfaces, suggested by the agree- 

ment between analytical and numerical results, has been questioned by the results of 
recent experiments on two-fluid flow in porous media [8-11] and on the growth of 
bacterial colonies [ 121, which yield significantly higher values for a and p in d = 2. 

plrt.icc!ar, I recent exper;.rt?ent in medii =n R I  R =0.525. 
Similarly, in the experiment on bacterial growth, Vicsek el al [I21 find a = 0.78i0.07. 
Although these exponents are significantly larger than the values obtained previously 
for simple growth models, they approximately satisfy the scaling identity [S, 13,141 
a + z = 2, which applies to models in the KPZ universality class [3]. 

A possible explanation for the anomalously large exponents found in these experi- 

arise from the fact that the amplitude of the random noise in the experiments has a 
non-Gaussian, power-law distribution of the form P ( q ( r ,  1 ) ) -  l/q'+'. where q(r ,  I )  
is the delta-correlated noise. From simulations of a discrete'model with non-Gaussian 
noise in d = 2, he obtained preliminary results for the exponent a for t~ = 2-1, which 

anaiyiicai iheories, and experimenis, &,:U& of advances siem fromi ihe faci 

-.-e> r 

Eenls has been recent!y proposed by Zhang [!SI. He suggested that the new expo"en!s 
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was found to decrease from a value of 1 at p = 2 towards the Gaussian noise value of 
with increasing p. The result a = 0.75, for p = 3, is relatively close to the experimental 

results. The possibility that this model could explain the experimental results as well 
as the possibility of a new universality class for the KPZ equation is quite intriguing. 
Therefore more extensive investigations of this model and its variants may provide a 
deeper insight into the experiments as well as various theoretical approaches to surface 
growth. 

In this letter we present the results of extensive studies in d = 2 of the scaling 
properties of several surface growth models which belong to the universality class of 
the KPZ equation with non-Gaussian noise. Since experiments directly measure not 
only the average width and height of the interface but also the surface profile, we have 
also investigated the distribution of the width and height fluctuations of the interface 
at saturation. In addition, we have conducted an extensive study of both scaling 
exponents for each model for p = 2 to 8. For all models studied, the KPZ scaling relation 
a + z = 2 is found to hold, while no crossover to Gaussian exponents is observed. 

The first model we studied is the Zhang model [ lS ]  of interface growth for which 
the evolution of the surface is defined by the discrete equation, 

h(i, t +  1) =max(h(i-  1 ,  I ) +  T ( i -  1 ,  I ) ,  h ( i +  1, f ) + v ( i +  1, I ) )  (1) 

where h(i, t )  is the height of the interface at position i at time t, and i runs over only 
even indices if f is even, odd indices i f f  is odd, and the noise TJ has the distribution, 

for TJ 5)  1 
1 

P ( T J ) - p  

P(TJ)=O otherwise. 

This model is believed to be equivalent [15, 161 to the T=O directed polymer in a 
random potential and accordingly to a discrete-time KPZ equation, For 0s p s 2, the 
first and second moments of P ( T J )  diverge, and therefore anomalous exponents are 
not surprising. For p > 2, due to the central-limit theorem, the average of the noise in 
the continuum limit has a Gaussian distribution and thus one might expect a crossover 
to Gaussian exponents. However, it has been suggested by Zhang [17] that since this 
model is equivalent to a discrete-time KPZ equation, no continuum limit exists and 
thus anomalous exponents are possible even for p > 2. 

In addition to results for this model, we also present results for two other growth 
models with non-Gaussian noise. The second model studied is a noise-enhanced 
variation of the Zhang model in which successive sites on the same sublattice do  not 
see the same noise at the site in between them. The third model i5 a modification of 
the ballistic deposition model [18], for which the evolution equation is, 

h ( i ,  t+ l )=max(h( i -1 ,  I ) ,  h ( i + l ,  I ) ,  h(i, t )+q(i ,  t ) )  (3 )  

where again TJ obeys equation (2). 
For each of the growth models studied, the noise TJ was generated at each odd 

(even) site at each odd (even) time step 1, by generating an independent random 
number r at each site such that O <  r < 1 and calculating the quantity TJ = r-‘”r’. We 
have recently shown [I91 that a finite cut-off in the distribution leads to a crossover 
to Gaussian noise behaviour. Therefore, we used both 32-bit and 64-bit random numbers 
in order to ensure that an artificial cut-off was not introduced into the distribution. 
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Since experiments directly measure not only the average width and height of the 
interface but also the surface profile, we have first determined the distribution of the 
surface width w and the fluctuations in the height Sh(r,  t ) =  h(r ,  f)-(h(r, t ) ) , ,  as a 
function of system size L at saturation for different +. We find that both distributions 
can be scaled for all values of p using the scaling ansatz, 

P( L, X )  - L-"F( L Y X )  (4) 

where X = w or Sh. This scaling form was previously found for surface growth models 
with Gaussian noise [20]. Figures 1 and 2 show typical scaling plots of this form for 
the Zhang model with p = 3 for the width distribution and the height-fluctuation 
distribution respectively. Similar plots were obtained for other values of p as well as 
for the other two models. In all cases we find that both distributions and the correspond- 
ing scaling functions have power-law tails of the form U-(*+". This implies that the 
existence of power-law noise may be determined experimentally from measurements 
of these distributions. We note that for the case of power-law noise the scaling form 
(4) leads to the scaling relation, ((X,)") - L"" for n < p, which implies that there is 
no multiscaling behaviour for the quantities w and Sh for n < p. 
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Figure 1. Width distribution function P(L, w )  at = 3  for four different values of L (L 
ranges from 64 to 512 in powers of 2). Inset shows scaling plot with 01 = 0.75 for data in 
main figure. Slope of broken line i s  -4.0. 

We now discuss our results for the scaling exponents a and p. Figure 3 shows data 
for the Zhang model for the saturation width ( RMS deviation of the surface height) 
against system size L for different values of p, as well as the fits used to determine 
the exponent U. Averages for all system sizes were taken over times of the order of 
several million time steps, i.e. significantly longer than the correlation time for even 
the largest L. Similar results for the noise-enhanced version of the Zhang model yield 
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Flgure 3. Log-log plots of saturation width w(L,m) against L far the Zhang model, for 
fi = 2-8, and L = 16 to 4W6. Top curve is for f i  = 2, bottom is for f i  = 8. Broken lines show 
fits to data with slopes (,i = 2  to 8) 1.04, 0.756. 0.625, 0.56, 0.525,0.51. 0.50. Bottom three 
curves have been shifted down by 0.1, 0.2. and 0.3 respectively for clarity. 
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slightly higher values of 01. We note that for both models the crossover to asymptotic 
scaling occurs at larger L with increasing p. In addition, no sign of a crossover to 
Gaussian exponents is observed. 

Figure 4 shows similar data for the ballistic deposition model defined by (3). For 
this model, we find results for the exponent a which are somewhat larger than obtained 
for the Zhang model. In addition, crossover effects appear to be significantly smaller 
in this model, although the slope appears to be decreasing slightly with system 
size L. 

Figure 5 shows data for the early-time behaviour for each value of p for the Zhang 
model. Values for the growth exponent p were determined directly from runs of the 
order of 2000 to 20 000 time steps on very large systems from L = 131 072 to L = 524 288, 
with averages over 20 to 100 runs. As in previous studies [20, 211 of surface growth, 
self-averaging of the surface width was observed to hold beyond the earliest times for 
p > 3. For p = 2 and 3, however, large fluctuations were observed and the surface 
width appeared to be only weakly self-averagingt. In addition, the growth exponent 
p appeared to be very sensitive to the effects of finite system size. Thus, for p > 3 the 
simulation of very large systems at early times was statistically equivalent to many 

log L 
Flgure 4. Log-log plots of saturation width w (  L, m) against L far the ballistic deposition 
model for p = 2 - 8 ,  L =  16 to 2048. Top curve is for p = 2 ,  bottom is far p = 8 .  Broken 
lines show fits 10 data with slopes ( p = 2  to 8). 1.03, 0.77, 0.65. 0.59, 0.555, 0.54, 0.53. 
Bottom three curves have been shifted down by 0.1, 0.2, and 0.3 respeclively for 
clarity. 

t We note that the quantity w =(16hl) (which is an equally valid mcasure of thc width) was found to be 
self-averaging for a11 fi studied. Similar differences in the self-averaging properties were also found for 
different definitions of the height-height correlation function for p = 2 and 3. Details of this work will be 
reponed elsewhere. 
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Figure 5. Log-log plots of w(L,  1 )  against I for the Zhang model for @ = 2-8. Broken lines 
show fits to data with slopes (@ = 2  to 8) 0.98, 0.60, 0.449, 0.395, 0.355, 0.339. 0.331. 

more runs on smaller systems, and allowed us to avoid the saturation effects due to 
system size. Our results (see figure 5) for the exponent p for the Zhang model for 
p > 2 satisfy very accurately (within 0.02) the KPZ scaling relation a + alp = 2. For 
p = 2 the scaling relation was not found to hold as accurately (a + a/@ = 2.1). Similar 
data were obtained for the ballistic deposition model. The values obtained for p are 
again somewhat larger than for the Zhang model. We note, however, that the KPZ 

scaling relation was found to hold less accurately for this model. 
Figure 6 summarizes our results for the exponent a for all three models, for 

2 s ~  s8. As already mentioned, for the ballistic deposition model defined by (3) the 
exponents are somewhat larger for all p than for the other two models. At the moment 
we do not completely understand the reason behind this discrepancy. However, since 
the relation a + z = 2 is approximately satisfied by all three models, it is reasonable to 
assume that they all belong to the KPZ universality class. Therefore, in the asymptotic 
limit they should agree. In this connection we note that results for the Zhang model 
for the exponent a, obtained from the scaling of the saturation velocity as a function 
of system size [19], yielded somewhat higher values than obtained from the scaling of 
the width w for p 3 4 .  (Specifically, we obtained for p =3-8, a =0.74, 0.63, 0.58, 
0.55, 0.535, 0.53.) In addition, better scaling behaviour at small L (than for the width 
w )  was observed. Thus, more work is needed to determine if the discrepancy is simply 
a crossover effect or is in fact an indication of a breakdown of subuniversality. 

One interesting question regarding the universality class of the KPZ equation with 
power-law noise, is whether there exists a critical value of p = b C  beyond which the 
exponents cross over to Gaussian noise behaviour in d = 2. Our results for all models 
indicate that for p s 7, the exponents a and p remain clearly above the Gaussian 
values a = f, p =f. However at p = 8, for both versions of the Zhang model, we obtain 
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Figure 6. Surface roughness exponent UI as a function o f  p for all three models. Open 
squares and triangles are result$ for the Zhang model and its noise-enhanced variant 
respectively, while circles are results for model of [3). Full triangles are estimates for the 
Zhang model h a 4  on fits 10 the scaling nf!he sa!wa!inn vc!"ci!y with sys!pm size Rrokm 
curve is Flary-theory prediction in d = 2. 

results which are essentially indistinguishable within error bars from the Gaussian 
values. We note that our results for a and B for all three models disagree strongly 
with the Flory-type formula [ 17,221 a = (1 + d ) / ( p  + 1) which predicts pc = 5 in d = 2. 

exponents a and p are not due to crossover effects, we also studied a linear growth 
model for which the addition of non-Gaussian noise is not expected to affect the 
asymptotic values of the exponents. For this model, the growth rule is that the new 
height h( i ,  t f  1) is equal to the average of itself and its two nearest neighbours at time 
t, plus an additional noise term. A study of the growth exponents for this model, which 

power-law noise does not alter the growth exponents i.e. a = f, p =a, and z = 2 for 
p>2. I n  addition, no unusual crossover effects were seen for p >2. 

In conclusion, we have studied three different surface growth models with power-law 
noise in d =2.  For all three models, we find that the distributions of the width and 
the height fluctuations obey a scaling form with a power-law tail, thus providing a 
neve! !echniq.le Fe: determining !he existence nf nan-Ganssian nnise in exper'.-en:s 
on surface growth. In addition, we find that the scaling exponents a and p are 
anomalous for 2 s  p S7 for all three models. While some discrepancies are observed 
for the values of the exponents, we believe this is most likely due to crossover effects. 
Finally, we have verified that for a model without sideways growth, the presence of 
power-law noise does not alter the exponents or cause anomalous crossover behaviour 

models in the KPZ universality class with power-law noise. 

As a;;iijonai &e& ihai the anomaious obtained for p > z  for 

. .  is in  the Edwar&-'#ikizsafi [::I Kik$ersz:itf c:ass, ioiifiims that the pieaeiice of 

for U. > 2: -!%is provides further support for the existence ofnnoma!ous erponen!s fer 
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